A. Tiriac and M. B. Feller (2019). Embryonic neural activity wires the brain, Science (Insight), 364 . [Pubmed]


A. Tiriac, B. Smith, M. B. Feller (2018). Light prior to eye-opening promotes retinal waves and eye-specific segregation, Neuron, 100(5):1059-1065. [Pubmed]

T. Marques, M. T. Summers, G. Fioreze, M. Fridman, R. F. Dias, M. B. Feller and L. Petreanu (2018). A role for mouse primary visual cortex in motion perception, Current Biology, 28(11): 1703-1713 [Pubmed]

R. D. Morrie and M. B. Feller (2018).  A Dense Starburst Plexus Is Critical for Generating Direction Selectivity, Current Biology, 28(8):1204-1212 [Pubmed]


R. D. Morrie and M. B. Feller (2017).  Motion Vision:  Cortical preferences influenced by retinal direction selectivity, Current Biology (Dispatch), 27: R710-713 [Pubmed]

A.S. Mauss, A. Vlasits, A. Borst and M. B. Feller  (2017). Visual Circuits for Direction Selectivity, Annual Review Neuroscience, doi: 10.1146/annurev-neuro-072116-031335. 


J. M. Rosa, R. M. Morrie, H. C. Baertsch and M. B. Feller  (2016). The contributions of rod and cone pathways to retinal direction selectivity across light intensities and through development, J.  Neurosci., 36(37): 9683.

D. A. Arroyo and M. B. Feller (2016). Spatiotemporal features of retinal waves instruct the wiring of visual circuitry, Front. Neural Circuits 10:54 [Pubmed]

R. D. Morrie, M. B. Feller (2016). Development of synaptic connectivity in the retinal direction selective circuits, Curr Opin Neurobiol. 40:45-5 [Pubmed]

D. A. Arroyo, L. A. Kirkby, M. B. Feller (2016). Retinal waves modulate an intraretinal circuit of intrinsically photosensitive retinal ganglion cells, J. Neurosci, 29; 36 (26):  6892-905  [Pubmed]

R. Bos, C. Gainer, M. B. Feller (2016).  Role for visual experience in the development of the direction-selective circuits, Current Biology, 26(10), 1367-75  [Pubmed].

A. L. Vlasits, R. D. Morrie, A. Tran-Van-Minh, A. Bleckart, C. F. Gainer, D. A. Gregorio, M. B. Feller (2016).  A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron, 89, 1317-1330     [PubMed]


J.M Rosa*, R. Bos*, G.S. Sack, C. Fortuny, A. Agarwal, D. EBergles, J.G. Flannery, M.B. Feller (2015). Neuron-glia signaling in developing retina mediated by neurotransmitter spillover. Elife, eLife 2015;10.7554/eLife.09590, [PubMed]

R. D. Morrie and M. B. Feller (2015). An asymmetric increase in inhibitory synapse number underlies the development of a direction selective circuit in the retina, Journal of Neuroscience 35(25):9281-6.   [PubMed] 

A. Firl, J.B. Ke, L. Zhang, P.G. Fuerst, J.H. Singer, M.B. Feller (2015). Elucidating the role of AII amacrine cells in glutamatergic retinal waves. Journal of Neuroscience Jan 28;35(4):1675-86.  [PubMed]

 A. M. Hamby, J. M. Rosa, C-H Hsu and M. B. Feller (2015). CaV3.2 KO mice have altered retinal waves but normal direction selectivity, Visual Neuroscience,32:E003 [PubMed]


Rosa JM and Feller MB. Neurodevelopment: a novel role for activity in shaping retinal circuits. Curr Biol. 2014 Oct 6;24(19):R964-6.  [PubMed].  Comment on paper by Johnson and Kerschensteiner

S.C. Dodani*, A.Firl*, J. Chan, C. I. Nam, C. S. Onak, M. B. Feller, and C. J. Chang (2014). Copper is an endogenous modulator of spontaneous activity of neural circuits, Proceedings of the National Academy of Sciences 111(46):16280-5. [PubMed]

A. L. Vlasits, R. Bos, R. D. Morrie, C. Fortuny, J. G. Flannery, M. B. Feller, and M. Rivlin-Etzion (2014). Retinal adaptation alters excitatory input to starburst amacrine cells and switches their polarity, Neuron83(5):1172-84. [PubMed]

Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S, Feller MB, Datwani A, Shatz CJ (2014). Synapse elimination and learning rules co-regulated by MHC Class 1 H2-Db, Nature, 509(7499):195-200.  [PubMed]

Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD, Feller MB, Feldheim DA (2014). Dendritic and Axonal Targeting Patterns of a Genetically-Specified Class of Retinal Ganglion Cells that Participate in Image-Forming Circuits” Neural Development9(1):2. [PubMed


Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady C, Matsuoka RL, Yau KW, Feller MB, Kolodkin AL (2013). “ON and OFF direction-selective retinal circuits require different molecular mechanisms for functional assembly”, Science342:124197 [PubMed]

Kirkby LA, Feller MB. (2013). Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proceedings of the National Academy of Sciences 110(29):12090-5. |PubMed||Article|

 Ford KJ, Arroyo DA, Kay JN, Lloyd EE, Bryan RM Jr, Sanes JR, Feller MB. (2013). A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells. Journal of Neurophysiology 2013, 109(9):52250-9. |PubMed||Article|

Firl A, Sack GS, Newman ZL, Tani H, Feller MB (2013). Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves. Journal of Neurophysiology 2013, 109(7):1969-78. |PubMed||Article|

 L. A. Kirkby, G. S, Sack, A. Firl and M. B. Feller (2013), “A role for correlated spontaneous activity in the assembly of neural circuits”, Neuron, 4;80(5):1129-44. [PubMed]  Review


Rivlin-Etzion M, Wei W, Feller MB (2012). Visual stimulation reverses the directional preference of direction-selective retinal ganglion cells. Neuron 2012, 76(3):518-25. |PubMed||Article|

Ford KJ, Felix AL, Feller MB (2012). Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves. Journal of Neuroscience 2012, 32(3):850-63. |PubMed||Article|

Ford KJ, Feller MB (2012). Assembly and disassembly of a retinal cholinergic network. Visual Neuroscience 2012, 29(1):61-71. |PubMed|Article|  Review


Rivlin-Etzion, M, Zhou, K, Wei, W, Elstrott, J, Nguyen, P, Barres, B, Huberman, A, Feller, M. (2011).Transgenic mice reveal unexpected diversity of On-Off direction selective retinal ganglion cell subtypes and brain structures involved in motion processing. Journal of Neuroscience 2011, 31(24):8760-9. |PubMed||Article|

Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S, Willecke K, Feller MB. (2011). The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina. Journal of Neuroscience 2011, 31(27):9998-10008. |PubMed||Article|

 Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC., (2011). Development of single retinofugal axon arbors in normal and beta-2 knock-out mice. Journal of Neuroscience 2011, 31(9):3384-99. |PubMed||Article|

Blank M, Fuerst PG, Stevens B, Nouri N, Kirkby L, Warrier D, Barres BA, Feller MB, Huberman AD, Burgess RW, Garner CC., (2011). The Down Syndrome Critical Region Regulates Retinogeniculate Refinement. Journal of Neuroscience 2011, 31(15):5764-5776. |PubMed||Article|

Wei W, Feller MB (2011). Organization and development of direction-selective circuits in the retina. Trends in Neurosci 2011, 34(12):638-645. |PubMed|ArticleReview


Wei W, Hamby AM, Zhou K, Feller MB, (2010). Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 2010, Dec 5 |PubMed||Article||Supplementary|

Barkis W, Ford K, Feller MB, (2010). Non cell-autonomous factor induces the transition from excitatory to inhibitory GABA signaling in retina independent of activity. Proceedings of the National Academy of Sciences Epub Dec 6. |PubMed||Article||Supplementary|

Elstrott J, Feller MB, (2010). Direction-selective ganglion cells show symmetric participation in retinal waves during development. Journal of Neuroscience 2010, 30(33):11197-201. |PubMed||Article||Supplementary|

Wei W, Elstrott J, Feller MB, (2010). Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nature Protocols 2010, 5(7):1347-1352. |PubMed||Article|

 Anishchenko A, Greschner M, Elstrott J, Sher A, Litke AM, Feller MB *, Chichilnisky EJ *, (2010). Receptive Field Mosaics of Retinal Ganglion Cells Are Established Without Visual Experience. Journal of Neurophysiology 2010, 103(4):1856-1864 (* contributed equally to this work) |PubMed||Article|

Blankenship AG, Feller MB (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature Reviews Neuroscience 2010, 11(1):18-29. |PubMed|Article|  Review


 Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW, (2009). DSCAM and DSCAML1 Function in Self-Avoidance in Multiple Cell Types in the Developing Mouse Retina. Neuron 2009, 64(4):484-497. |PubMed||Article||Supplementary|

Dunn TA, Storm DR, Feller MB, (2009). Calcium-Dependent Increases in Protein Kinase-A Activity in Mouse Retinal Ganglion Cells Are Mediated by Multiple Adenylate Cyclases. PLoS ONE 2009, 4(11):e7877. |PubMed||Article|

Huberman AD, Wei W *, Elstrott J *, Stafford BK, Feller MB **, Barres BA ** (2009). Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 2009, 62(3):327-334 (* contributed equally to this work; ** contributed equally to this work) |PubMed||Article|

Blankenship AG, Ford KJ, Johnson J, Seal RP, Edwards RH, Copenhagen DR, Feller MB (2009). Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 2009, 62(2):230-41 |PubMed|Article|

Elstrott J, Feller MB (2009). Vision and the establishment of direction-selectivity: a tale of two circuits. Current Opinion in Neurobiology, Apr 20 [Epub ahead of print] |PubMed|Article|  Review


Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM, Chichilnisky EJ, Feller MB (2008). Direction selectivity in the retina is established independent of visual experience and early patterned activity. Neuron 2008, 58(4):499-506 |PubMed|Article|

Huberman A, Feller MB, Chapman B (2008). Mechanisms Underlying Development of Visual Maps and Receptive Fields. Annual Review of Neuroscience 31, 479-509 |PubMed|Article|  Review

Dunn TA and Feller MB (2008). Imaging second messenger dynamics in developing neural circuits. Developmental Neurobiology 68(6), 835-44 |PubMed|Article|  Review

Del Rio T and Feller MB (2008). "Neural activity and visual system development", Chapter in Handbook of Behavior and Comparative Neuroscience

Feller MB and Blankenship AG (2008). "The function of the retina prior to vision - the phenomenon of retinal waves and retinotopic refinement", Chapter in The Mouse Visual System, MIT Press  

 Feller MB and Ruthazer ES (2008). "Activity in visual system development", in Larry R. Squire, Editor-in-Chief, Encyclopedia of Neuroscience, Academic Press, Oxford 

Wenner P and Feller MB (2008). "Spontaneous patterned activity in developing neural circuits", in Larry R. Squire, Editor-in-Chief, Encyclopedia of Neuroscience, Academic Press, Oxford 


Wang C-T, Blankenship A *, Anishchenko A *, Elstrott J, Fikhman M, Nakanishi S, Feller MB (2007). GABA-A receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. Journal of Neuroscience 2007, 27(34):9130-40 (* contributed equally to this work) |PubMed|Article|

 Dunn T *, Wang C-T *, Colicos MA, Zaccolo M, Dipilato M, Zhang J, Tsien RY, Feller MB (2006). Imaging of cAMP levels and PKA activity reveals that retinal waves drive oscillations in second messenger cascades. Journal of Neuroscience 26(49), 12807-12815 (* co-first authors) |PubMed|Article|Supplementary|

Firth SI and Feller MB (2006). Dissociated GABAergic retinal interneurons exhibit spontaneous increases in intracellular calcium concentration. Visual Neuroscience 23(5), 807-14 |PubMed|

Del Rio T and Feller MB (2006). Early retinal activity and visual circuit development (preview). Neuron 52, 221-2 |PubMed|Article|


Hansen KA, Torborg CL, Elstrott J, Feller MB (2005). The expression and function of Connexin 36 in the developing mouse retina. J. Comp Neurol 493(2), 309-20 |PubMed|Article|

Torborg CL, Hansen KA, Feller MB (2005). High frequency synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nature Neuroscience 8(1), 72-8 |PubMed|Article|Supplementary|

Torborg CL, Wang C-T, Muir-Robinson G, Feller MB (2004). L-type calcium channel agonist induces correlated depolarizations in mice lacking the beta2 subunit of nAChRs. Vision Research 44(28), 3347-55.n |PubMed|Article|

Colicos MC, Firth SI, Bosze J, Goldstein J, Feller MB (2004). Emergence of realistic retinal networks in culture promoted by the superior colliculus. Developmental Neuroscience 26(5-6), 406-16 |PubMed|Article|

Torborg CL. and Feller MB (2004). Unbiased analysis of bulk axonal segregation patterns. Journal of Neuroscience Methods 135(1-2), 17-26 |PubMed|Article|

Torborg CL and Feller MB (2005). Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in Neurobiology 76(4), 213-35 |PubMed|Article|

Feller MB and Scanziani M (2005). A precritical period for plasticity in visual cortex. Current Opinion in Neurobiology15(1), 94-100 |PubMed|Article|  Review

Firth SI, Wang C-T, Feller MB (2005). Retinal Waves: Mechanisms and function in visual system development. Cell Calcium 37(5), 425-32 |PubMed|Article|  Review

 Feller MB (2004). Retinal waves drive calcium transients in undifferentiated retinal cells. Journal of Neurophysiology (Editorial Focus) 91(5), 1940 |PubMed|Article|  Review


McLaughlin T*, Torborg CL*, Feller MB, and O'Leary DD (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147-1160 (*co first authors)|PubMed|Article|Supplementary|

Muir-Robinson G, Hwang B, Feller MB (2002). Retinogeniculate axons undergo local segregation in the absence of eye-specific layers. Journal of Neuroscience 22(13), 5259-64 |PubMed|Article|

Harris RE, Coulombe MG, Feller MB (2002). Dissociated retinal neurons form periodically active synaptic circuits. Journal of Neurophysiology 88(1), 188-95 |PubMed|Article|

Singer JH, Mirotznik RR, Feller MB (2001). Potentiation of L-type calcium channels reveals non-synaptic mechanisms that corelate spontaneous activity in the developing mammalian retina. Journal of Neuroscience 21(21), 8514-8522 |PubMed|Article|

Bansal A, Singer JH, Hwang BJ, Xu W, Beaudet A, Feller MB (2000). Mice lacking specific nAChR subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON/OFF circuits in the inner retina. Journal of Neuroscience 20(20), 7672-7681 |PubMed|Article|

Feller MB (2003). Visual system plasticity begins in the retina (Preview). Neuron 38, 3-4 |PubMed|Article|

Feller MB (2002). The role of nAChR-mediated spontaneous retinal activity in visual system development. Journal of Neurobiology 53, 556-567 |PubMed|ArticleReview

Roerig B and Feller MB (2000). Neurotransmitters and Gap Junctions in Developing Neural Circuits. Brain Research Reviews 32, 86-114 |PubMed|Article|  Review

Last Century

Feller MB (1999). Spontaneous Correlated Activity in Developing Neural Circuits. Neuron 22, 653-656 |PubMed|Article|  Review

Stellwagen D, Shatz CJ, Feller MB (1999). Dynamics of retinal waves are controlled by cyclic-AMP. Neuron 24, 673-685 |PubMed|Article|Supplementary|

Butts DA, Feller MB, Shatz CJ, Rokhsar D (1999). Retinal waves are governed by collective network properties. J. Neuroscience 19 (9), 3580-3593 |PubMed|Article|

Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998). Spontaneous activity drives competition in retinogeniculate patterning. Science 279, 2108-2112 |PubMed|Article|

Messersmith EM, Feller MB, Shatz CJ (1997). Migration of neocortical neurons in the absence of functional NMDA receptors. Molecular and Cell Biology 9, 347-357 |PubMed|Article|

Feller MB, Butts DA, Aaron H, Stellwagen D, Rokhsar D, Shatz CL (1997). Dynamic processes shape spatiotemporal properties of spontaneous retinal waves. Neuron 19, 293-306 |PubMed|Article|Supplementary|

Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996). Cholinergic synaptic transmission is required for wave propagation in developing retina. Science 272, 1182-1187 |PubMed|

Feller MB, Delaney KR, Tank DW (1996). Presynaptic calcium dynamics at the retino-tectal synapse in frog optic tectum. Journal of Neurophysiology 76 (1), 381-400 |PubMed|Article|